
Project no. IST-34107
Project acronym: ARTTS

Project title: Action Recognition and Tracking based on Time-of-flight
Sensors

Action Recognition Toolbox

Duration of the project: October 2006 – September 2009

Partners of the project consortium:

INB, University of Lübeck, Germany
IMM, Technical University of Denmark, Denmark
LAPI, University Politehnica Bucuresti, Romania
Swiss Center for Electronics and Microtechnology, Switzerland
SensoMotoric Instruments GmbH, Germany

Project website:

www.artts.eu

Project co-funded by the European Commission within the
Sixth Framework Programme (2002-2006)

1 Introduction
The ARTTS Action Recognition toolbox is a library of MATLAB routines that
provide functionality for action recognition in TOF image sequences and for
labelling ground truth data. Here is an overview of the functionality included in
the toolbox:

 Labelling actions in TOF image sequences

 Range flow computation for action recognition

 Intrusion detection based on histogram measures

 Action recognition from trajectories of key points

 Action recognition using motion history images

2 Licence
The ARTTS Action Recognition toolbox (code and accompanying documentation,
including this document) is provided under the following licence:

Copyright 2006-2009 The ARTTS Consortium

You may use this code for non-commercial purposes. However, you may not
redistribute the code, distribute modified versions of the code or use the
code for commercial purposes without prior permission from the ARTTS
Consortium. Contact the Consortium (info@artts.eu) for details.

This code and the accompanying documentation are provided without any
warranty, not even the implied warranty of merchantability or fitness for a
particular purpose.

This work was developed within the ARTTS project (www.artts.eu), which is
funded by the European Commission (contract no. IST-34107) within the
Information Society Technologies (IST) priority of the 6th Framework
Programme. Neither the European Commission nor the ARTTS Consortium
can be held responsible for any consequence of using this code and the
accompanying documentation.

3 Installation
Since some components in the Activity Recognition toolbox require routines from
the Signal Processing and Object Tracking toolboxes, first make sure that the
toolboxes have been installed and added to the MATLAB search path. Then, copy
the directory ar_toolbox to a suitable location, and add this directory to
MATLAB's search path. The best way to do this is to include the corresponding
addpath calls in your startup.m file.

Some components of the toolbox require supporting libraries to be present:

 If you want to use the routines for action recognition from trajectories of
key points (Section 4.4), you need to obtain the “Better Skeletonization”
library by Nicholas Howe from MATLAB Central. As of this writing, this
library was available under the following link:

2

http://www.mathworks.com/matlabcentral/fileexchange/11123

Install the library and compile the MEX files contained in it.

4 Components
This section gives a more detailed overview of the components included in the
toolbox. For each of the major components, we will give a description of the
functionality, including links to relevant publications, a list of the routines that
implement this functionality, and an example of how to use the routines.

For a detailed description of the routines, refer to the documentation that is
included directly in the source code of the routines; this can be accessed from
MATLAB by typing

help <routine name>

For example, the documentation for the routine read_artts_range can be
displayed by typing

help read_artts_range

4.1 Labelling
This component provides a utility for labelling actions in TOF image sequences.
These labelled actions can then be used to train detectors and compare the
detection results against a known ground truth. Each action is associated with a
bounding box that contains the action as well as a starting and end frame.

The following routines are provided:

label_actions
Label bounding box and starting / end frame of actions

parse_actions
Parse action parameters in labelled action database

Here is an example of how to label actions:

label_actions('data/action_db/action_db.arttsidx', ...
 'labelled.arttsidx');

Press the space bar to move to the next image; 'b' to move to the previous
image; 'f' to mark the first frame of an action; and 'l' to mark the last frame of an
action. Drag the blue lines to set the bounding box for an action. Press 's' to save
the results to labelled.arttsidx. (See the documentation in label_actions.m
for more details.) The sample file action_db.arttsidx already contains a
labelled action.

Here is an example of how to read the labelled actions from a database index
file:

% Read database index file
[names, params]=read_arttsidx('data/action_db/action_db.arttsidx');

% Parse action descriptors
actions=parse_actions(params);

3

The actions are returned as a cell array actions; see the documentation in
parse_actions.m for more details.

4.2 Range flow computation for action recognition
This component provides a routine for the estimation of range flow on a
sequence of TOF images. For further details on the implemented algorithm refer
to:

Hagen Spies, Bernd Jähne, and John L. Barron. Dense Range Flow from
Depth and Intensity Data. Proceedings of International Conference on
Pattern Recognition (ICPR'00), volume 1, pages 131–134, 2000.

The routine estimates the 3D motion vector for each pixel of the sequence if
sufficient information for a robust estimation is available. Otherwise, the routine
returns zero for all components of the 3D motion vector.

The range flow estimation algorithm is implemented in the following routine:

range_flow
Takes a cell array containing a sequence of TOF images and estimates the
range flow for each frame. The routine returns three cell arrays representing
the estimated components of the 3D motion vector [u, v, w]' for each frame.

Here is an example of how to use the range flow estimation routine:

% Read database index file
images=read_artts_db('data/action_db/action_db.arttsidx');

% Compute range flow
[U V W]=range_flow(images);

% Visualize
[M N]=size(images{1}.range);
[X Y]=meshgrid(1:N, 1:M);
for t=1:length(images)
 imshow(images{t}.amplitude,[]);
 title(sprintf('frame %d', t));

 hold on;
 u=U(:,:,t); v=V(:,:,t); w=W(:,:,t);
 idx=find(u~=0 & v~=0 & w>0.02);
 quiver(X(idx), Y(idx), u(idx), v(idx), 'g');
 idx=find(u~=0 & v~=0 & w<-0.02);
 quiver(X(idx), Y(idx), u(idx), v(idx), 'r');
 hold off;
 pause(0.1)
end

4.3 Intrusion detection based on histogram measures
This component implements an intrusion detection algorithm for video
surveillance using the TOF camera, exploiting the special ability of the device to
measure distances. Two different detection methods (based on histogram and
motion estimation) are presented and compared. The algorithm is described in
detail in the paper referenced below.

The basic idea is illustrated by Figures 1 and 2. The histogram of a scene
containing a person (Figure 2b) differs from the histogram of the empty scene
exactly in the pixels corresponding to the person in the scene. Hence, through a

4

simple histogram difference operation, one can detect the event of a person
entering or leaving the scene.

a) b)

Figure 1: a) Empty scene. b) Person entering the scene.

Figure 2: Histograms corresponding to Figures 1 a) and b)

The algorithm uses two histogram techniques to detect an intrusion:

a) Histogram comparison technique:

The overall difference between the ith frame and its successor can be
evaluated by the expression

SDi=∑
j=1

G

∣H i  j −H i+1  j ∣

When the overall difference SDi is larger than a given threshold T, a
segment boundary (corresponding to a person entering or leaving the
scene) is declared.

b) Presence detection by counting histogram peaks:

This step begins with a low-pass filtering of the histogram for smoothing,
and then a peak-finder method is applied. Finally, the number of histogram
peaks is counted and compared along the video.

The second method for intrusion detection is based on motion estimation. We use
an improved version of the block-matching algorithm, with zero-motion detection.

For more details, see the following paper:

5

Şerban Oprişescu, Mihai Ciuc, Vasile Buzuloiu. Histogram and motion based
intrusion detection and tracking algorithms for ToF cameras. Proceedings of
the IEEE International Symposium on Signals, Circuits & Systems (ISSCS),
Iasi, Romania, 2009.

The intrusion detection algorithms can be accessed through a graphical user
interface (GUI), see Figure 3.

Figure 3: Graphical user interface (GUI) for intrusion detection.

This GUI includes charts showing the result of the three intrusion detection
indicators at each frame. The algorithm runs in almost real time.

This component provides the following routines:

intrusion_det
This routine takes the name of a TOF image sequence file and performs
intrusion detection on it. The routine returns the results of the three
intrusion detectors described above.

intrusion_det_gui
Call this routine to start the intrusion detection GUI.

Here is an example of how to use the intrusion detection routine:

% Process sample image
intrusion=intrusion_det('data/pres_det_movie.mat');

% Plot intrusions detected by the three types of intrusion detector
for j=1:3
 subplot(3, 1, j);
 stem(intrusion(j,:));
end

4.4 Action recognition from trajectories of key points
This component recognizes actions based on trajectories of key points. The first
step is the segmentation (silhouette extraction) of the moving person from the
scene; this is straightforward due to the distance information delivered by the
TOF camera. Then, we extract a number of key points from the silhouette: The
centroid, the head, and the extremities of the limbs. Apart from the centroid, all
key points are extracted from the skeleton of the silhouette, obtained using
morphological operations and a median filter. Once the key points are extracted,

6

the next step is to track them through the image sequence and to record their
trajectories. The trajectories can be absolute or referenced to the centroid. On
these key point trajectories, we perform action recognition by computing several
features, such as mean and absolute speed, total variation etc. A discrimination
table (Table 1) is used to discriminate between the six different actions shown in
Figure 4.

Figure 4: Sample frames from the six actions to be recognized. From left to
right, top to bottom: Walk, carry, run, bend, jump, and box.

Action Conditions

Walk Vx > thr VHx>> ∆Hx vx avr

any y smallCarry Vx > thr VHx ≅ 0 vx avr

Run Vx > thr VHx>> ∆Hx vx big

Box Vx >> ∆x VHx>> ∆Hx VvHx big

Jump Vy > thr VHy > thr vy big
any x small

Bent Vy > thr VHy > thr vy avr

Vx and Vy are the total variations of x(k) and y(k) respectively; VHx , VHy

are total variations of one key point on hand coordinates; vx, vy are the
speeds on corresponding coordinates; VvHx is the total variation of the
speed of hand key point on x.

Table 1: Conditions defining the six actions.

Figure 5 shows an example of trajectories obtained for the centroid.

7

Figure 5: Example of trajectories (x/y) obtained for the centroid for the
different actions.

For more details, see the following paper:

Şerban Oprişescu, Constantin Burlacu, Vasile Buzuloiu, and Mihai Ivanovici.
Action Recognition for Simple and Complex Actions using Time of Flight
Cameras. International Conference on Image Processing, Computer Vision
and Pattern Recognition (IPCV 2009), Las Vegas, USA, 2009.

The algorithm is implemented in the following routine:

ar_key_points
Performs the action recognition on a TOF image sequence from trajectories
of key points.

Before this routine can be used to recognize actions, it needs to learn some
parameters of a person walking; this is achived by calling the function with
the parameter learning=1 on an image sequence that shows a person
walking without interruption. After the learning phase is completed, the
routine can be called with learning=0 on a different image sequence to
recognize the action contained in it; the recognized action is output to the
console.

Here is an example of how to use this routine:

% Learning phase
[action_lin, action_col, action_lin_rel, action_col_rel, ...
 var_tr, var_tr_Glin, var_tr_Gcol, viteza, viteza_abs, vvhx]= ...
ar_key_points('data/walk_movie', 2, 21, 367, 1);

% Recognize “run” action
[action_lin, action_col, action_lin_rel, action_col_rel, ...
 var_tr, var_tr_Glin, var_tr_Gcol, viteza, viteza_abs, vvhx]= ...
ar_key_points('data/run_movie', 2, 25, 367, 0);

% Recognize “bend” action
[action_lin, action_col, action_lin_rel, action_col_rel, ...
 var_tr, var_tr_Glin, var_tr_Gcol, viteza, viteza_abs, vvhx]= ...
ar_key_points('data/bend_movie', 2, 30, 367, 0);

8

4.5 Action recognition using motion history images (LAPI)
This component performs action recognition using two types of images:

 Binary Motion Energy Image (BMEI), a binary image of the energy of the
motion, which shows where motion is present in the movie

 Motion History Image (MHI), a gray-level image which shows motion
history, the intensity being inversely proportional to the elapsed time.

Figure 6 shows examples of both types of images for an action of the type “raise
both hands”. (The images were inverted for better reproduction in print.)

a) b)

Figure 6: a) Binary Motion Energy Image (BMEI), b) Motion History Image
(MHI)

For further details, see

Diana Rosu. Applications for Action Recognition using ToF Cameras. Diploma
thesis, Image Processing and Analysis Laboratory (LAPI), Politehnica
University of Bucharest, July 2009.

The algorithm is implemented in the following routine:

ar_motion_history
Performs the action recognition using motion history images. The routine
returns the number of actions and a text label containing their type, for
instance “the person raised both hands”.

Here is an example of how to use this routine:

% Recognize sample action
ar_motion_history('data/raise_both_hands.mat', 1, 21, 300);

% Recognize another action
ar_motion_history('data/lean_left.mat', 1, 25, 300);

9

	1 Introduction
	2 Licence
	3 Installation
	4 Components
	4.1 Labelling
	4.2 Range flow computation for action recognition
	4.3 Intrusion detection based on histogram measures
	4.4 Action recognition from trajectories of key points
	4.5 Action recognition using motion history images (LAPI)

