
Project no. IST-34107
Project acronym: ARTTS

Project title: Action Recognition and Tracking based on Time-of-flight 
Sensors

Object Tracking Toolbox

Duration of the project: October 2006 – September 2009

Partners of the project consortium:

INB, University of Lübeck, Germany
IMM, Technical University of Denmark, Denmark
LAPI, University Politehnica Bucuresti, Romania
Swiss Center for Electronics and Microtechnology, Switzerland
SensoMotoric Instruments GmbH, Germany

Project website:

www.artts.eu

Project co-funded by the European Commission within the 
Sixth Framework Programme (2002-2006)



1 Introduction
The ARTTS Object Tracking toolbox is a library of MATLAB routines that provide 
functionality for tracking persons and objects in TOF images and for labelling 
ground-truth data. Here is an overview of the functionality included in the 
toolbox:

 Labelling upper body pose, positions of faces and positions of facial 
features in images

 Facial feature tracking

 Multiple person tracking

 Gait Analysis

2 Licence
The ARTTS Object Tracking toolbox (code and accompanying documentation, 
including this document) is provided under the following licence:

Copyright 2006-2009 The ARTTS Consortium

You may use this code for non-commercial purposes. However, you may not 
redistribute the code, distribute modified versions of the code or use the 
code for commercial purposes without prior permission from the ARTTS 
Consortium. Contact the Consortium (info@artts.eu) for details.

This code and the accompanying documentation are provided without any 
warranty, not even the implied warranty of merchantability or fitness for a 
particular purpose.

This work was developed within the ARTTS project (www.artts.eu), which is 
funded by the European Commission (contract no. IST-34107) within the 
Information Society Technologies (IST) priority of the 6th Framework 
Programme. Neither the European Commission nor the ARTTS Consortium 
can be held responsible for any consequence of using this code and the 
accompanying documentation.

3 Installation
Since some components in the Object Tracking toolbox require routines from the 
Image Processing toolbox, first make sure that the Image Processing toolbox has 
been installed and added to the MATLAB search path. Then, copy the directory 
ot_toolbox to a suitable location, then add this directory and the subdirectory 
ot_toolbox/gait to MATLAB's search path. The best way to do this is to include 
the corresponding addpath calls in your startup.m file.

4 Components
This section gives a more detailed overview of the components included in the 
toolbox. For each of the major components, we will give a description of the 
functionality, including links to relevant publications, a list of the routines that 
implement this functionality, and an example of how to use the routines.

For a detailed description of the routines, refer to the documentation that is 
included directly in the source code of the routines; this can be accessed from 
MATLAB by typing



help <routine name>

For example, the documentation for the routine read_artts_range can be 
displayed by typing

help read_artts_range

4.1 Labelling
This component provides utilities for labelling the positions of objects in TOF 
images. These labelled images can then be used to train detectors and compare 
detection results against a known ground truth.

The following routines are provided:

label_nose
Label position of nose (or other facial features)

label_faces
Label position of faces

label_pose
Label upper body pose (positions of head, shoulders, and hands)

Here is an example of how to label facial features:

nose=label_nose('data/nose_db/nose_db.arttsidx');

In each image, click on the position of the nose. The labelled positions are 
returned as a 2×n matrix, where n is the number of images; each column of the 
matrix contains the position of the nose (row and column indexes) in the 
corresponding image.

Here is an example of how to label faces:

label_faces('data/nose_db/nose_db.arttsidx', 'faces.arttsidx');

In each image, drag the blue lines to enclose the face, then press the space bar 
to move to the next image. (See the documentation in label_faces.m for more 
details.) The labelled positions are saved in a new database index file 
faces.arttsidx.

Here is an example of how to label upper body pose:

label_pose('data/pose_db/pose_db.arttsidx', 'labelled_pose.arttsidx');

In each image, drag the nodes to the middle of the head, the shoulders, and the 
hands. (The red edge of the model represents the person's left arm, the green 
edge represents the right arm.) Press the space bar to move to the next image; 
see the documentation in label_pose.m for more details. The labelled positions 
are saved in a new database index file labelled_pose.arttsidx.

4.2 Facial feature tracking
This component provides functionality for tracking facial features using geometric 
features (the generalized eccentricities). These are combined with a very simple 
threshold-based classifier to produce a robust facial feature detector; typically, 



this detector is used to track the position of the nose. For more details, see the 
following paper:

Martin Böhme, Martin Haker, Thomas Martinetz, and Erhardt Barth. A facial 
feature tracker for human-computer interaction based on 3D Time-of-Flight 
cameras. International Journal of Intelligent Systems Technologies and 
Applications, 5(3/4):264–273, 2008.

The following routines are used to train and evaluate the detector:

box_classifier
Trains a simple “box” classifier on labelled training images

nose_detector
Evaluates the facial feature detector and returns the position of the facial 
feature in one or several images

show_nose_detections
Applies the facial feature detector to a set of test images and visualizes the 
result

Here is an example of how to use the facial feature detector:

% Read training images
images=read_artts_db('data/nose_db/nose_db.arttsidx');

% Load positions of noses
noses=load('data/nose_db/nose.txt');

% Train classifier
classifier=box_classifier(4, images, noses, default_feat_opts());

% Run classifier on training images and display results
show_nose_detections(images, classifier, 0, default_feat_opts());

In this example, the detector is applied to the same images that were used to 
train it. For a real test, the detector would of course have to be trained on new, 
unseen images.

4.3 Gait analysis
This component does gait tracking and analysis. The main file TrackGait is a 
script-file that takes the user through every step in the process, from raw input 
collected by the TOFrecorder, through the tracking performed by runFrame, 
which finds the pose in a given frame, to the actual gait analysis done by 
gaitAnalysisTreadmill. For more details, see the following paper:

Rasmus R. Jensen, Rasmus R. Paulsen and Rasmus Larsen. Analysis of gait 
usig a treadmill and a Time-of-flight camera. In Dynamic 3D Imaging – 
Workshop in Conjunction with DAGM, volume 5742 of Lecture Notes in 
Computer Science, pages 154-166, 2009.

The following routines are used for recording and analysing gait sequences:

compile_gait_mex
Routine that compiles the gait analysis MEX files. Execute this once before 
using the gait analysis routines.



TrackGait
Script file that takes the user through every step in the gait analysis, from 
selecting the input image sequence in the data folder to actually performing 
the gait analysis. When started, the script prompts the user for the input 
image sequence and the directory in which the results (videos and 
diagrams) should be saved. The script can be run as a whole or cell-wise. 
The input data file requires the first frame to be without the subject, and the 
subject should walk from left to right. A sample input file is contained in the 
subdirectory 'data'.

TOFrecorder
GUI that works as a recorder for a connected TOF camera. Films sequences 
and stores them in the format used by TrackGait. The subject should walk 
from left to right in the frame.

4.4 Multiple person tracking (LAPI)
This component tracks multiple persons in a TOF image sequence. The first step 
is motion estimation, using an improved version of the block-matching algorithm 
(with zero-motion detection) that is less sensitive to noise. Then, to determine 
the precise number of moving objects and their location, the algorithm follows 
these steps: a) construct a binary image (0: background, 1: moving object) from 
the motion vectors; b) erode this binary image; c) dilate the previously obtained 
image; d) label the connected components; and e) determine the centres of the 
previously obtained objects. These steps are depicted in Figure 1. An example (a 
frame) is shown in Figure 2.

a) b) c) d) e)

Figure 1: a) binary image; b) erosion; c) dilation; d) labeling; e) determine 
objects' centres

Figure 2: Multiple person tracking example

Due to the high sensitivity of the motion estimation, the tracking is practically 
never lost while the person is present in the scene.



For more details, see the following paper:

Şerban Oprişescu, Mihai Ciuc, Vasile Buzuloiu. Histogram and motion based 
intrusion detection and tracking algorithms for ToF cameras. Proceedings of the 
IEEE International Symposium on Signals, Circuits & Systems (ISSCS), Iasi, 
Romania, 2009.

The following routine implements the multi-person tracking:

mult_track
Tracks multiple persons in an image sequence. The routine takes the name 
of the image sequence as input and returns a tracking matrix containing the 
persons' coordinates in each frame.

The function adapts to a changing number of persons in the scene. Each 
person is identified in the scene by a yellow marker in the form of a star or 
cross to indicate whether the person is approaching or leaving the camera, 
respectively.

Here is an example of how to use this routine:

track_pers=mult_track('data/movie_2_pers.mat');


	1 Introduction
	2 Licence
	3 Installation
	4 Components
	4.1 Labelling
	4.2 Facial feature tracking
	4.3 Gait analysis
	4.4 Multiple person tracking (LAPI)


