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Abstract— This paper presents a very simple feature-based nose
detector in combined range and amplitude data obtained by
a 3D time-of-flight camera. The robust localization of image
attributes, such as the nose, can be used for accurate object
tracking. We use geometric features that are related to the
intrinsic dimensionality of surfaces. To find a nose in the image,
the features are computed per pixel; pixels whose feature values
lie inside a certain bounding box in feature space are classified as
nose pixels, and all other pixels are classified as non-nose pixels.
The extent of the bounding box is learned on a labeled training
set. Despite its simplicity this procedure generalizes well, that is,
a bounding box determined for one group of subjects accurately
detects noses of other subjects. The performance of the detector
is demonstrated by robustly identifying the nose of a person in
a wide range of head orientations. An important result is that
the combination of both range and amplitude data dramatically
improves the accuracy in comparison to the use of a single type
of data. This is reflected in the equal error rates (EER) obtained
on a database of head poses. Using only the range data, we detect
noses with an EER of 0.66. Results on the amplitude data are
slightly better with an EER of 0.42. The combination of both
types of data yields a substantially improved EER of 0.03.

I. INTRODUCTION

In this paper we focus on object tracking, more precisely, on
the task of nose and head tracking. The most common forms
of digital images that are utilized in computer vision to solve
such tasks are intensity and range images. The former type is
by far the most popular, which is mainly due to the low cost
of the corresponding image sensors.
However, within the last decade a novel type of image sensor
– the 3D time-of-flight (TOF) camera – has been developed
that fuses the acquisition of both intensity and range data
into a single device at a relatively low cost. The future
pricing of such cameras is expected to be comparable to a
standard webcam. In contrast to webcams, the 3D TOF camera
simplifies the determination of geometrical properties of the
3D scene significantly, thus it is worth investigating methods
that make explicit use of the available data.
We will discuss geometrically invariant measures that are
suitable for identifying facial features in a 3D TOF camera
image. Based on these features, we construct a simple nose
detector and test its performance on range and intensity data
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individually, as well as on the combination of these two
types of data. An important result is that the performance
of the detector on the combined range and intensity data is
substantially better than on either type of data alone. This
underlines the potential of 3D TOF cameras for machine vision
applications.
Previous work has already identified the nose as an important
facial feature for tracking e.g. in [1] and [2]. In the former
approach the location of the nose is determined by template
matching, under the assumption that the surface around the
tip of the nose is a spherical Lambertian surface of constant
albedo. This approach gives very robust results under fixed
lighting conditions and at a fixed distance of the user from the
camera. The latter approach is based on a geometrical model
of the nose that is fitted to the image data.
We also consider the nose as being very well suited for
head tracking, because the nose is obviously a distinctive
characteristic of the human face. In terms of differential
geometry, the tip of the nose is the point of maximal curvature
on the object surface of a face. A benefit of analyzing the 3D
surface in terms of differential geometry is that a major portion
of differential geometry is concerned with the description of
invariant properties of rigid objects. Although curved surface
patches have been shown to be unique [3], [4], Gaussian
curvature is rarely used as a feature because its computation is
based on first and second order derivatives, which are sensitive
to noise. We propose alternative features that can be related
to generalized differential operators. These features, which are
computed per pixel of the input image, are used to decide for
each input pixel if it corresponds to the tip of the nose based
on the simple application of thresholds learned from a set of
labeled training data.
We will first review and motivate the geometric features and
evaluate them with respect to their suitability for the specific
task of nose detection. Then, we will discuss the robustness of
the method by presenting results on a database of head pose
images acquired using a MESA SR3000 TOF camera [5].

II. GEOMETRIC INVARIANTS

For the definition of invariant geometric features we will
restrict ourselves to a special type of surface known as the
Monge patch or the 2-1/2-D image. Such surfaces are defined
as a function f : R2 → R3 in the following manner:

(x, y) 7→ (x, y, f(x, y)). (1)



This is the natural definition for digital intensity images, as
each pixel value is bound to a fixed position on the image sen-
sor without explicit reference to a coordinate representation in
the 3D world. In the case of range data, however, each pixel is
associated with explicit 3D coordinates via the geometry of the
optical system of the camera. Nevertheless, we will assume a
weak-perspective camera model for both range and amplitude
data of the 3D TOF camera, because we do not expect a great
difference in range for the pixels of interest. (Within a frontal
face we do not expect any range differences greater than 5 cm,
which would roughly correspond to a relative shift of only 5%
in the coordinates x and y at a distance of 1 meter from the
camera if we assumed a perspective camera model.) Thus, we
can treat both types of data as Monge patches, which results in
a simplified mathematical formulation and comparable results
for range and amplitude data.
The features derived for the above data model are mainly
due to a conceptual framework for image analysis which
was introduced in [6] and [7]. Within this framework, image
regions are associated hierarchically, with respect to their
information content, with 0D (planar), 1D (parabolic), and
2D (elliptic/hyperbolic) regions of a Monge patch. Naturally,
the concept of curvature is fundamental to this representation.
Within this framework, the authors proposed a set of measures
that provide basic and reliable alternatives to the Gaussian
curvature K and the mean curvature H for the purpose of
surface classification.
Let us first recall the definition of Gaussian curvature for a
Monge patch:

K =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
. (2)

In case only the sign of the curvature is relevant, one can rely
on the DET-operator D, which can be formulated in terms of
the determinant of the Hessian

(hij) =
(

fxx fxy

fxy fyy

)
. (3)

This amounts to the numerator of (2). Thus the DET-operator
takes the following form:

D = fxxfyy − f2
xy = det(hij) = d1d2. (4)

Here, d1 and d2 denote the eigenvalues of the Hessian.
Rearranging the first part of the formula [4] yields

D = 1
4 (fxx + fyy)2 − 1

4 (fxx − fyy)2 − f2
xy

= (∆f)2 − ε2,
(5)

where ∆f denotes the Laplacian and ε is referred to as the
eccentricity, which is defined as

ε2 =
1
4
(fxx − fyy)2 + f2

xy. (6)

The above formulation yields a relationship of the curvature
to the Laplacian and the eccentricity. A generalized repre-
sentation of the operators ∆f and ε can be achieved in the
Fourier domain by defining the generalized eccentricity εn via

saddle
valleyridge

ǫ2

planar

ǫ0

peak pit

Fig. 1. Discrimination of the six surface types pit, peak, saddle, valley, ridge,
and planar within the feature space spanned by ε0 (∆f) and ε2 (ε).

the following filter functions in polar coordinates ρ and θ,
where A(ρ) represents the radial filter tuning function:

Cn = inA(ρ) cos(nθ),

Sn = inA(ρ) sin(nθ).
(7)

Recall that the transfer functions of partial derivatives are of
the form (ifx)n and (ify)n, where fx and fy represent the
spatial frequencies and n denotes the order of differentia-
tion. Even-order partial derivatives correspond to real transfer
functions, whereas odd-order partial derivatives correspond to
imaginary transfer functions.
The transfer functions in (7) correspond to convolution kernels
cn(x, y) and sn(x, y) in the image domain. Using these, we
obtain the generalized eccentricity

ε2n = (cn(x, y) ∗ l(x, y))2 + (sn(x, y) ∗ l(x, y))2 (8)

for n = 0, 1, 2, . . . , which corresponds to |∆f | for n = 0
and to the eccentricity ε for n = 2, when A(ρ) = (2πρ)2.
The gradient is defined by εn for n = 1 and A(ρ) = 2πρ.
In a purely geometrical interpretation, all measures εn are
positive, and as a result one cannot distinguish between convex
and concave curvature using ε0 and ε2. An extension to this
formulation in [4] justifies the use of ε0 with the sign of ∆f ,
i.e. ε0 = −c0 ∗ l.
For practical applications, the radial filter tuning function A(ρ)
can be combined with a low-pass filter, e.g. Gaussian blurring
of the form G(ρ, σ) = exp(−πρ2/4σ2). Ideally, the low-pass
filter should be adapted to the distribution of noise inherent in
the data.
The measures εn for n = 0 and n = 2 can be used to dis-
tinguish between the six well-known surface types in the
feature space spanned by ε0 and ε2. Fig. 1 shows where
the different surface types lie in feature space. Because the
nose is a local minimum in the range data, we would expect
the corresponding pixels to lie in the region labeled pit.
Conversely, since the nose tends to be a local maximum in
the intensity data, we would expect to find the corresponding
pixels in the region labeled peak.
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Fig. 2. (Top) Distribution of feature points for pixels taken from range data
of the SR3000 camera projected into the 2D feature space spanned by ε0
(∆f) and ε2 (ε). (Bottom) The feature space around the origin at a higher
resolution. The black crosses represent feature points corresponding to the
nose tip of various subjects and clearly cluster in the region associated with
the surface type pit as expected. The grey dots represent randomly chosen
non-nose pixels.

III. FEATURE SELECTION

The interpretation of Fig. 1 not only demonstrates how the
features εn can be interpreted intuitively, but it also shows how
the interpretation can be used to select meaningful features for
the task at hand.
The top plot in Fig. 2 displays feature points for pixels
computed on range data in the feature space spanned by ε0
and ε2. Only pixels with high amplitude, i.e. pixels belonging
to an object that is close to the camera, were considered.
First, it is noticeable that the frequency of occurrence is
ordered with respect to 0D structures around the origin, 1D
structures along the diagonals, and 2D structures. Thus, only
a small portion of pixels belongs to curved regions. However,
in the bottom plot in Fig. 2, one can observe that the feature
points associated with the tip of the nose cluster nicely and
correspond to the surface type pit as one would expect.
Qualitatively similar results can be observed on the amplitude
data, the major difference being that nose pixels cluster in the
region associated with the surface type peak.

IV. NOSE DETECTOR

We use the geometric invariants ε0 and ε2, as introduced in
Section II, to construct a nose detector. It decides per pixel of
the input image if it corresponds to the tip of a nose or not.

Fig. 3. Sample images from the database of head poses. The amplitude data
(left column) and the range data (right column) are given for four subjects.
All pixels identified as nose pixels by our detector are marked in each image,
the cross simply highlighting the locations.

In other words, each pixel of the input image is mapped to a
d-dimensional feature space, where d is the number of features
considered. Within this feature space, we estimate a bounding
box that encloses all pixels associated with the tip of a nose.
It is important to mention that the bounding box should be
estimated in polar coordinates due to the interpretation of the
feature space (see Fig. 1).
The estimation is done in a supervised fashion based on a
set of feature points computed for pixels that were hand-
labeled as belonging to the tip of the nose. The extent of the
bounding box within each dimension of the feature space is
simply taken as the minimum and the maximum value of the
corresponding feature with respect to all training samples. A
softness parameter can be introduced to control the sensitivity
of the detector.
To detect a nose within an image, the features are computed
for each pixel, and a pixel is classified as the tip of a nose
if its feature point lies within the estimated bounding box in
the feature space. Despite the simplicity of this approach, we
obtain very accurate and robust results, as we will show below.
The input for each feature computation was either the range
or the amplitude data of an image from the SR3000 camera.
The raw camera data was preprocessed by scaling it to
the interval [0, 1]. Then, a threshold computed using Otsu’s
method [8] was applied to the amplitude data to separate
the foreground from the background. The background was
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(a) Range data.
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(b) Amplitude data.
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(c) Range and amplitude data.

Fig. 4. ROC curve of detection rate vs. false positive rate on range data (a), amplitude data (b), and the combination of both (c). The detection rate gives
the percentage of images in which the nose has been identified correctly, whereas the false positive rate denotes the percentage of images where at least one
non-nose pixel has been misclassified. Thus, strictly speaking, the curves do not represent ROC curves in the standard format, but they convey exactly the
information one is interested in for this application, that is, the accuracy with which the detector gives the correct response per image.

set to a fixed value in both range and amplitude data. This
was mainly done to avoid unwanted spatial filter responses
on the range data due to high levels of noise in regions with
low confidence. The radial filter tuning function was set to
A(ρ) = (2πρ)2 · exp(−πρ2/4σ2) with σ = 0.3 for all feature
computations. We expect that filter optimization will further
improve the results.

V. RESULTS

The procedure was evaluated on a database of images taken
of people at different head poses. A sample of such images
is shown in Fig. 3, where both amplitude and range data are
given for four subjects. Our database consists of a total of 13
subjects; for each subject, nine images were taken at roughly
the same distance from the camera for different orientations
of the head. The extent of the bounding box was estimated on
a training set of three subjects, and the method was evaluated
on the remaining ten subjects. The results presented in the
following show that the method generalizes very well when
using the combination of range and amplitude data.
Fig. 4 shows the ROC curves for different combinations of
input data. For Fig. 4(a) only the range data was used from
each image, whereas Fig. 4(b) shows the results for the
amplitude data. The features ε0 and ε2 were used in both cases.
The method achieves an equal error rate (EER) of 0.64 on the
range data and 0.42 on the amplitude data. Even though the
range data seems to be better suited for the proposed geometric
features the amplitude data gives slightly better results. We
cannot give a final explanation for this effect, but we assume
that it is due to a higher level of noise in the range data.
Although the EER is not satisfying in both cases, the results
are quite good considering the simplicity of the classifier.
We were able to improve the performance dramatically by
using a combination of features on range and amplitude data.
We used the two features ε0 and ε2 for both types of data,
which amounts to a total of four features. The corresponding
ROC curve is shown in Fig. 4(c), and we can report an EER

of 0.03 for this method. We believe that a very robust tracking
of the nose can be achieved using this feature based approach.

VI. CONCLUSION

In this paper, we presented a very simple detector for the hu-
man nose based on the 3D TOF camera SR3000. The method
yields very accurate and robust detection rates. However, we
can point out three aspects that have potential to increase the
performance the detector: (1) The use of a more sophisticated
classifier, (2) an adaptation of the low-pass filter to the noise
distribution, and (3) the use of additional features.
Also, we point out that when the detector is used to track the
nose over several frames, as opposed to performing detection
on individual frames, robustness can be improved by exploit-
ing the fact that, in general, the position of the nose does not
change much from frame to frame.
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